# Лекция 6: "Архитектура АСУ. Представления о аппаратных и программных средствах реализации таких систем"

#### Гончаров Олег Игоревич

Факультет вычислительной математики и кибернетики, Московский государственный университет имени М.В. Ломоносова

2013

### Архитектура автоматизированной системы

Математическая модель СУ может совершенно по-разному отображаться на реальные устройства.

**Архитектура автоматизированной системы** — абстрактное представление АСУ, включает модели компонент (устройств, программных компонент) и взаимосвязи между ними.

Декомпозиция системы: объектная и функциональная.

- В простейшем случае архитектура совпадает с расширенной структурной схемой СУ.
- В распределенные системах функция сбора, обработки и преобразования информации распределена между несколькими устройствами.
- В иерархических системах можно выделить несколько уровней системы. На высоких уровнях ОУ сложнее, но за счет декомпозиции, задача управления упрощается.

Требования к архитектуре: слабая связанность, открытость, надежность, модифицируемость, расширяемость и т.п.

Решаемые задачи: мониторинг, автоматическое управление, 📱 👓

#### Компоненты автоматизированной системы

Можно выделить следующие функциональные компоненты:

- Устройства преобразования информации: компьютеры, контроллеры, ПЛК и т.п. Могут снабжаться специализированными устройствами ввода и вывода: устройства в/в общего назначения, АЦП, ЦАП и т.п. для сопряжения с датчиками и исполнительными устройствами.
- Чувствительные элементы (датчики, первичные преобразователи) — преобразуют контролируемую величину в удобную для обработки форму.
- Исполнительные устройства непосредственно воздействуют на объект правления.
- Линии связи:
  - передача информации от датчиков и к ИУ,
  - обмен информацией между устройствами преобразования информации.

Далее обсудим подробно эти компоненты в основном применительно для цифровых систем управления (т.е.

# Архитектура многоуровневых АСУ ТП

| Nº             | Уровень                                                         | Протоколы взаимодействия                                               | Решаемая задача                                                                                                          |
|----------------|-----------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 3 <sup>1</sup> | Уровень<br>управления<br>предприятием                           |                                                                        | Управление и учет ресурсов предприятия.                                                                                  |
| 2              | Диспетчерский уровень (ПК операторов, SCADA, БД)                | Ethernet, TCP/IP, OPC client                                           | НМІ (человеко-машинный интерфейс). Диспетчерское управление, мониторинг, сбор данных в БД.                               |
|                |                                                                 | OPC server, CORBA server ↓↑ шлюз, ведущее устройство промышленной сети | "Мост" между диспетчерским и контроллерным уровнем                                                                       |
| 1              | Контроллерный<br>уровень (сеть<br>промышленных<br>контроллеров) | Промышленные сети: Profibus,<br>Modbus, CAN, TTP, RS-485               | На этом уровне обычно замы-<br>каются обратные связи, реа-<br>лизация САУ, реальное вре-<br>мя. Иногда присутствует НМІ. |
|                |                                                                 | Аналоговые интерфейсы, RS-<br>485, RS-232 и др.                        |                                                                                                                          |
| 0              | Уровень дат-<br>чиков и ИУ                                      |                                                                        | Непосредственное взаимо-<br>действие с ОУ.                                                                               |

<sup>&</sup>lt;sup>1</sup>Не входит в АСУ ТП

## OPC (OLE for Process Control) серверы

Предназначены для сопряжение различных промышленных сетей с диспетчерским уровнем на основе стандартного протокола взаимодействия с клиентами.

Спецификация разрабатывается OPC Foundation, изначально основана на DCOM (Windows), современные версии не зависят от платформы..

Стандарт ОРС относится только к интерфейсам клиентских прорамм, способ подключения к устройствам контроллерного уровня не стандартизирован.

Сопряжение уровней осуществляет компьютер, снабженный

- Интерфейсный модуль промышленной сети (также часто выполняют функцию ведущего устройства сети)
- Программный ОРС сервер, получающий стандартные запросы клиентов, через сетевой интерфейс.

Обычно один ОРС сервер обслуживает одну промышленную сеть.

#### ОРС серверы

#### Способы взаимодействия:

- запрос-ответ: чтение и запись в синхронном или асинхронном (ответ через уведомление) режиме
- подписка-уведомление (в частности обработка событий "алармов")
- доступ к истории
- кеширование запросов
- именование оборудования (иерархическое пространство имен, поиск имен)
- разграничение доступа, защита данных
- перенаправление запросов между серверами

Возможны альтернативы на основе других технологий, например, CORBA.



#### SCADA системы

SCADA (Supervisory Control And Data Acquisition) обеспечивают взаимодействие между человеком и автоматизированным ТП. Предоставляют удобный интерфейс, часто в виде схемы ТП или ОУ.

#### Основные функции

- Диспетчерское управление:
  - взаимодействие с оператором,
  - помощь в принятии решения,
  - сигнализация о событиях и алармах (критических событиях),
  - ведение журнала, учет наработки.
- Автоматическое управление:
  - управление последовательностью операций, автоматическое управление,
  - адаптация к изменению условий ТП,
  - блокировка работы оборудования в определенных ситуациях.
- Хранение истории процесса: сбор и хранение данных.
- Безопасность и разграничение доступа.

